Tuesday, 30 December 2008

Homo antecessor

Homo antecessor (“Pioneer Man”) is the name given to an extinct human species known from just two sites in the Atapuerca Hills of Northern Spain – Gran Dolina and Sima del Elefante. The remains were discovered by Eudald Carbonell, Juan Luis Arsuaga and J. M. Bermúdez de Castro.

The initial discoveries were made at the Gran Dolina Cave, Layer TD6 between 1994 and 1995. The find comprised over 90 bone fragments including 18 skull fragments, 4 partial jaws, 14 teeth, 16 vertebrae, 16 ribs, 20 bones from the hands and feet, 2 wrist bones, 3 collar bones, 2 lower arm bones, a thigh bone and 2 knee-caps from a minimum of 6 individuals, all of whom were aged between 3 and 18 when they died. Around 200 flaked stone artefacts were also found. Palaeomagnetic considerations date the find to at least 700,000 years old; electron spin resonance dates the fossils and artefacts to between 857,000 and 780,000 years old; bones of extinct rodent species support this age; the excavators conservatively date the find to 800,000 years old.

However in 2007 a fragment of a mandible and an isolated lower left fourth premolar from the same individual were recovered from the TE9 layer at the nearby Sima del Elefante site. These have also been assigned to Homo antecessor and dating based on palaeomagnetism, biostratigraphy and cosmogenic nuclides suggests an age of 1.2–1.1 million years.

The tools found at the Gran Dolina are simple Mode 1 (Oldowan) technology, with no evidence of Acheulian hand-axes or cleavers characteristic of later African Homo ergaster or H. heidelbergensis.

One of the most significant features of the Gran Dolina TD6 find is that around 25% of the bones show signs of human-caused damage including chop and cut marks, peeling where bones have been broken and bent, and percussion marks where bones have been splintered for marrow extraction. All of which adds up to a compelling case for cannibalism. The extent of the damage suggests this was of a dietary rather than ritual nature, suggesting in turn nutritional stress.

Bermúdez de Castro and his colleagues argue against the currently popular view that hominids such as Mauer, Vertesszollos, Bilzingsleben, Arago, and Petralona, together with Bodo, Broken Hill 1, and Dali (among other middle Pleistocene fossils not considered to be H. erectus) belong to a single species, Homo heidelbergensis, that was ancestral to both modern humans and the Neanderthals. They argue that European middle Pleistocene fossils are ancestral only to the Neanderthals and that the Mauer mandible, the holotype for Homo heidelbergensis, shows clear derived Neanderthal traits, such as a large retromolar space, whereas teeth shape and morphology are indistinguishable from those of Neanderthals. They conclude that other than a European chronospecies, H. heidelbergensis should be rejected.

Dental and cranial features suggest Homo antecessor is close to Homo ergaster. While Homo antecessor has similarities to Homo heidelbergensis (i.e. proto-Neanderthals), it has more traits in common with modern humans than does Homo heidelbergensis, being for example relatively gracile, most similar to H. ergaster and modern humans but unlike H. heidelbergensis or the Neanderthals. On this picture, Homo antecessor evolved from Homo ergaster in Africa then spread via the Middle East to Europe where it evolved (via Homo heidelbergensis) into the Neanderthals. In Africa Homo antecessor evolved into Homo sapiens via such fossils as the Bodo and Kabwe skulls. The species Homo rhodesiensis or Homo helmei would have to be revived for these presumptive H. antecessor/H. sapiens transitional types, with H. heidelbergensis being a solely European transitional type between H. antecessor and the Neanderthals.

Neither this view nor Homo antecessor as a species is widely accepted. Many believe that H. antecessor is an ofshoot of Homo ergaster and that it died off without issue, possibly during the glacial periods of 800,000-600,000 years ago. Clearly further evidence is needed, from Africa in particular.


J. M. Bermudez de Castro, J. L. Arsuaga, E. Carbonell, A. Rosas, I. Martınez, M. Mosquera (1997): A Hominid from the Lower Pleistocene of Atapuerca, Spain: Possible Ancestor to Neandertals and Modern Humans, Science Vol. 276 30 May 1997.

Cameron D & Groves C (2004): Bones, Stones and Molecules: “Out of Africa” and Human Origins, Elsevier Academic Press.

Eudald Carbonell, Jose M. Bermudez de Castro, Josep M. Pares, Alfredo Perez-Gonzalez, Gloria Cuenca-Bescos, Andreu Olle, Marina Mosquera, Rosa Huguet, Jan van der Made, Antonio Rosas, Robert Sala, Josep Vallverdu, Nuria Garcıa, Darryl E. Granger, Marıa Martinon-Torres, Xose P. Rodrıguez, Greg M. Stock, Josep M. Verges, Ethel Allue, Francesc Burjachs, Isabel Caceres, Antoni Canals, Alfonso Benito, Carlos Dıez, Marina Lozano, Ana Mateos, Marta Navazo, Jesus Rodrıguez, Jordi Rosell & Juan L. Arsuaga (2008): The first hominin of Europe, Nature Vol 452 27 March 2008.

Scarre C (2005) (Ed): “The human past”, Thames & Hudson.

© Christopher Seddon 2008

No comments: